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Abstract
The solutions of the one-dimensional homogeneous nonlinear Boltzmann
equation are studied in the QE-limit (quasi-elastic; infinitesimal dissipation) by
a combination of analytical and numerical techniques. Their behaviour at large
velocities differs qualitatively from that for higher dimensional systems. In
our generic model, a dissipative fluid is maintained in a non-equilibrium steady
state by a stochastic or deterministic driving force. The velocity distribution for
stochastic driving is regular and, for infinitesimal dissipation, has a stretched
exponential tail, with an unusual stretching exponent bQE = 2b, twice as
large as the standard one for the corresponding d-dimensional system at finite
dissipation. For deterministic driving the behaviour is more subtle and displays
singularities, such as multi-peaked velocity distribution functions. We classify
the corresponding velocity distributions according to the nature and scaling
behaviour of such singularities.

PACS numbers: 45.70.−n, 05.20.Dd, 05.10.Ln, 02.70.Uu

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Background and outline

The model of inelastic hard spheres is one of the simplest frameworks to describe granular
gases (see, e.g., [1–3] for reviews and further references). The contraction of phase space due to
dissipative collisions leads to a non-equilibrium behaviour that is markedly different from that
of equilibrium systems (non-Gaussian velocity distributions, counter-intuitive hydrodynamics,
breakdown of kinetic energy equipartition, etc [1–3]). In this paper, we study in detail the
limit of quasi-elasticity [4–7] with particular emphasis on one-dimensional systems that have
already been the subject of some interest [8–11].
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The kinetic description is provided by the nonlinear Boltzmann equation. As we
are interested in the velocity statistics of dissipative gases, we will restrict ourselves to
homogeneous and isotropic solutions. Any spatial dependence will therefore be discarded. The
time evolution of the velocity distribution function F(v, t) is then governed by the following
equation [12, 13]:

∂tF (v) + FF = I (v|F) ≡
∫

n

∫
dw gν

[
1

αν+1
0

F(v∗∗)F (w∗∗) − F(v)F (w)

]
. (1)

Here FF represents the action of a driving mechanism, that injects energy into the system,
and counterbalances the energy dissipated by inelastic collisions. Consequently, the system is
expected to reach a non-equilibrium steady state. In the equation above g = v−w denotes the
relative velocity of colliding particles with g = |g|, ∫n(· · ·) = (1/�d)

∫
dn(· · ·) is an angular

average over the surface area �d = 2πd/2/�
(

1
2d

)
of a d-dimensional unit sphere, and gν

models the collision frequency. Note that in one dimension the integral
∫

n is absent. We have
absorbed constant factors in the time scale. Here (v∗∗, w∗∗) denote the restituting velocities
that yield (v, w) as post-collisional velocities, i.e.

v∗∗ = v − 1
2

(
1 + α−1

0

)
(g · n)n; w∗∗ = w + 1

2

(
1 + α−1

0

)
(g · n)n, (2)

where (unit) vector n is parallel to the line of centres of the colliding particles. Note that nn is
replaced by 1 in one dimension. The direct collision law is obtained from (2) by interchanging
pre- and post-collision velocities and by replacing α0 → 1/α0 where α0 < 1 is the restitution
coefficient. Each collision leads to an energy loss proportional to

(
1 − α2

0

)
. Elastic collisions

therefore correspond to α0 = 1.
In this paper, we will consider the source term in (1) to be of the form

FF = ∂ · (aF) − D∂2F = γ ∂ · (v̂vθF ) − D∂2F, (3)

where a = v̂vθ is a negative friction force, ∂ ≡ ∂/∂v is the gradient in v-space, and γ and D
are positive constants. Two situations will be addressed: (γ = 0,D > 0) or (γ > 0,D = 0).
They correspond respectively to stochastic white noise (WN) or to deterministic nonlinear
negative friction (NF). While the WN driving mechanism has been extensively studied
[6, 15, 16], the negative friction has been introduced more recently [13]. The continuous
exponent θ � 0 selectively controls the energy injection mechanism. Schematically,
increasing the value of θ corresponds to injecting more energy in the large velocity tail
of the distribution. However, two special values have been studied in the past [12–14, 16–18],
i.e. (i) the Gaussian thermostat (θ = 1), which is equivalent to the homogeneous free cooling
state, where the system is unforced and the possibility of spatial heterogeneities discarded (see
e.g. [16]) and (ii) the case θ = 0, referred to as ‘gravity thermostat’ [16] or as ‘negative solid
friction’ [13, 14] .

We emphasize that γ and D are irrelevant constants that can be eliminated (see below),
whereas the exponents θ and ν are fundamental quantities for our purposes. As it appears in
equation (1), ν governs the collision frequency of the system: ν = 1 corresponds to hard-
sphere-like dynamics and ν = 0 to the so-called Maxwell model [12, 19–22]. Our collision
kernel generalizes these two cases to a general class of repulsive power-law potentials, where
ν is related to the power-law exponent and the dimensionality (see [13]).

Under the action of the driving term F , the solution of (1) evolves towards a non-
equilibrium steady state. We will be interested in the properties of the corresponding velocity
distribution F(v), in the limit where α0 → 1−. Since the limit α0 → 1 turns out to be singular
in one dimension, attention must be paid to the fact that the value α0 = 1 (elastic interactions)
has to be analysed separately. Indeed, when α0 = 1 in one dimension, the collision law (2)
simply corresponds to an exchange of particle labels. So the initial velocity distribution does
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not evolve in time. On the other hand, the steady-state velocity distribution at any α0 < 1
is independent of the initial condition. In dimensions higher than 1, this property holds for
all values of α0 � 1. In other words, the one-dimensional situation with α0 < 1 exhibits
universal features, unlike its elastic counterpart. The quasi-elastic limit α0 → 1− is therefore
peculiar since a point with no universal properties (α0 = 1) is approached via a ‘universal’
route (α0 < 1). The resulting behaviour of F shows some surprising features, that may be
considered as mathematical curiosities, but are analytically challenging. It also turns out
that they are numerically difficult to study. The numerical study relies on the DSMC (direct
simulation by Monte Carlo) algorithm [23], which allows us to obtain an exact numerical
solution of the Boltzmann equation. As α0 approaches 1, the memory of the initial conditions
lasts for longer and longer times so that the computer time needed to reach the non-equilibrium
steady state increases and simulations become more and more time consuming.

The behaviour of our system is somewhat simpler in the case where energy is injected
by a stochastic force (WN), and we start by analysing this driving mechanism in section 2.
It will be shown that the regular high energy tail of F(v) ∼ exp[−vb], which holds in any
space dimension [12–14], is preempted by a quasi-elastic tail characterized by a different
stretching exponent bQE = 2b. This is a signature of the non-commutativity of the limits:
v → ∞ and α0 → 1−. The case of driving through negative friction will be addressed in
detail in section 3. As already observed for the homogeneous cooling state of inelastic hard
rods [4, 5, 9, 17, 18], the velocity distribution becomes singular in the QE-limit, where it
may approach a multi-peaked solution and not a Gaussian. Starting from a small-inelasticity
expansion for the collision operator I (v|F) in (1), we characterize the scaling behaviour. By
a combination of analytical work and numerical evidence, we propose a classification of the
different types of limiting velocity distributions, several of which correspond to new types of
solutions of the nonlinear Boltzmann equation.

1.2. Preliminary remarks

We start by introducing some notations and summarizing a few results [13] that are relevant
for our study. In the subsequent analysis, it is convenient to introduce the variables
p = (1 + α0)/2, q = (1 − α0)/2 so that p + q = 1, and to measure the velocities in
units of the rms velocity. We study steady states and introduce a rescaled velocity distribution
f (c) such that F(v) = v−d

0 f (v/v0) where v0 is the rms velocity, c = v/v0, and d is the
number of spatial dimensions. By definition,

∫
dcf = 1 and the normalization chosen reads∫

dc c2f = d/2. After inserting the scaling ansatz in equation (1), we have shown in [13]
that a stable steady state for WN driving is reached provided bWN = 1 + ν/2 > 0 and for NF
driving provided bNF = ν + 1 − θ > 0. When b < 0, the non-equilibrium steady state is
unstable, i.e. it is a repelling fixed point of the dynamics. Our analysis should therefore be
limited to the cases ν > −2 for WN and to ν > θ − 1 for NF.

We have shown in [13] that the quantity b introduced above not only separates stable
from unstable situations, but also governs the high energy tail of f (c). In marginal cases
where b vanishes, f has a power-law tail. The freely cooling (θ = 1) Maxwell model
(ν = 0) provides an illustration that has been discussed in [20–22]. On the other hand, when
b > 0, f has a stretched exponential tail so that ln f (c) ∝ −cb at large c. This result holds
in any dimension. In d = 1, the corresponding tail may however be ‘masked’ when α0 is
close to unity, a phenomenon already observed for hard rods (ν = 1) in [17]: the behaviour
ln f (c) ∝ −cb holds for c > c∗(α0), where c∗(α0) is an α0-dependent threshold. In the
QE-limit, the threshold value c∗(α0) → ∞. As a consequence, considering the limit of large
c at any finite α0, the standard behaviour with exponent b is observed. Alternatively, taking
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first the limit α0 → 1− at fixed c, new tails may appear. It is the purpose of the present paper
to study their properties. In addition, in the case of NF driving, f (c) becomes singular in the
quasi-elastic limit. Our goal will then be to understand the underlying scaling behaviour and
to propose a classification of the various limiting shapes for the velocity distribution.

2. White noise (WN) driving

Unless explicitly stated, we limit ourselves to d = 1. In the case of WN driving the integral
equation (1) for the scaling form, f (c) = v0F(cv0), becomes with the help of the relation
I (v|F) = vν−1

0 I (c|f )

I (c|f ) = −Dv−ν−1
0 f ′′(c) = − 1

2pqκνf
′′(c). (4)

The second equality has been obtained by applying
∫

dc c2(· · ·) to the first equality, see [13],
yielding

Dv−ν−1
0 = − 1

2 〈〈c2I (c|f )〉〉 = 1
2pq〈〈|c − c1|ν+2〉〉 ≡ 1

2pqκν, (5)

where the double brackets denote an average with weight f (c)f (c1). Similarly, simple
brackets denote an average with weight f (c).

It is next convenient to treat the 1D collision term,

I (c|f ) =
∫

dc1|c − c1|ν
[
α−ν−1

0 f (c∗∗)f (c∗∗
1 ) − f (c)f (c1)

]
, (6)

by using the inverse transformation, c = qu + pc∗∗
1 and c1 = pu + qc∗∗

1 , where u = c∗∗ and
|c − c1| = α0|c − u|/p. We obtain

I (c|f ) =
∫

du|c − u|ν
[
p−ν−1f (u)f

(
c − qu

p

)
− f (u)f (c)

]
. (7)

In the quasi-elastic limit q → 0+, p → 1−, we perform the small-q expansion, following
[4–6],

1

pν+1
f

(
c − qu

p

)
= (1 + (ν + 1)q)f (c) + q(c − u)f ′(c) + O(q2). (8)

Then we find to O(q) included,

I (c|f ) = q

∫
du f (u)|c − u|ν[(c − u)f ′(c) + (ν + 1)f (c)]

= q
d

dc
f (c)

∫
du|c − u|ν(c − u)f (u). (9)

Note that these results hold irrespective of the driving mechanism. The second equality can be
verified by evaluating the derivative. Inserting of (9) into (4) allows us to integrate (4) once,
yielding

f ′(c) + f (c)(2/κν)

∫
du|c − u|ν(c − u)f (u) = 0. (10)

This equation can be integrated once more to obtain the implicit equation

f (c) = C exp

(
− 2

(ν + 2)κν

∫
du|c − u|ν+2f (u)

)

∼ C exp

(
− 2cν+2

(ν + 2)κν

)
(c → ∞), (11)
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Figure 1. Rescaled velocity distribution f (c) obtained by numerically solving the 1D Boltzmann
equation (1) with WN driving by the DSMC technique [23] for the strongly interacting so-called
very hard particles model (ν = 2) [19]. Two extreme cases have been simulated, one close to
perfect elasticity (α0 = 0.995) where the QE-tail ln f versus cν+2 (main frame) is visible and the
other at complete inelasticity (α0 = 0), where the standard tail ln f versus c1+ν/2 (inset) is visible.

where C is an integration constant. The large velocity tail immediately follows. We recover a
result already obtained in [6, 17] for hard rods (ν = 1), as well as one for Maxwell models
(ν = 0) in [18], and we note that in the QE-limit the exponent bQE = 2bWN = ν + 2. On the
other hand, for any finite ε = 1 − α0, the large c behaviour is given by lnf (c) ∝ −cb with
b = 1 + ν/2 [13]. These two facts show that the limits c → ∞ and ε → 0 do not commute,

f (ε, c) ∼ exp(−Ac1+ν/2) (standard tail: large c, fixed ε 
= 0)

f (ε, c) ∼ exp(−Acν+2) (QE-tail: small ε, fixed c),
(12)

or, in a more rigorous formulation,

lim
ε→0+

lim
c→∞

lnf (ε, c)

c1+ν/2
= C (standard tail)

lim
c→∞ lim

ε→0+

lnf (ε, c)

cν+2
= C′ (QE-tail).

(13)

We have successfully tested these predictions against direct simulation Monte Carlo data
[23]. Figure 1 shows that the standard tail with exponent bQE = 1 + ν/2 is clearly observed
for α0 = 0 (see inset), while the QE-tail with exponent ν + 2 applies for α0 = 0.995 (see main
frame). Figure 2 conveys a similar message and shows further that in two dimensions Gaussian
behaviour is recovered, as expected, when α0 → 1 (see the inset of the right-hand side figure).
This illustrates the qualitatively different nature of the quasi-elastic limit in d = 1, as opposed
to higher dimensions.

3. Negative friction (NF) driving

The scaling equation for the analogue of (4) with NF driving becomes

I (c|f ) = γ

vν+1−θ
0

d

dc
(c|c|θ−1f ) = pqκν

2µθ+1

d

dc
(c|c|θ−1f ). (14)
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Figure 2. Left: velocity distribution obtained from DSMC simulations for weakly interacting 1D
particles (ν = − 1

2 ) with lnf (c) versus cν+2 (main frame) and versus c1+ν/2 (inset). In the main
frame the dashed line is a guide for the eye corresponding to the expected behaviour (12). Right:
d = 2, ln f (c) versus c2 (main) and versus c1+ν/2 (inset).
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Figure 3. Velocity distribution obtained from DSMC simulations with NF driving for
(θ, ν) = (1.0, 1.2) in 1D. As ε = 1 − α0 → 0+, f (c) becomes increasingly peaked around
c = ±c∗ ≡ ±1/

√
2 and ultimately evolves into two symmetric Dirac distributions. All

distributions displayed here and in other figures are such that
∫

dcf = 1,
∫

dc cf = 0 and∫
dc c2f = 1/2.

Here I (c|f ) takes the form (9), and the analogue of (5) has been used to eliminate γ . Moreover,
µθ+1 = 〈|c|θ+1〉 and κν = 〈〈|c − c1|ν+2〉〉. We therefore have to O(q) included,

f (c)

∫
dc1|c − c1|ν(c − c1)f (c1) = κν

2µθ+1
c|c|θ−1f (c). (15)

Previous studies of the free cooling regime of hard rods (θ = 1, ν = 1) have shown that f (c)

becomes singular when α0 → 1− and evolves into two symmetric Dirac peaks [4, 5, 9, 17].
It is indeed easy to check that f (c) = [δ(c + a) + δ(c − a)]/2 is a solution of (15), with
a = 1/

√
2 as required by our choice of normalization, 〈c2〉 = 1/2, and κν/(2µθ+1) =

2νaν+1−θ . Figure 3 shows that the approach to such a solution may be observed in
the numerical simulations for (θ, ν) 
= (1, 1). In addition, one can check that f (c) =
A[δ(c + a) + δ(c − a)] + Bδ(c) is also a solution of equation (15), provided that 2A + B = 1
and 4Aa2 = 1 to enforce normalization. The DSMC results may indeed display such a



Quasi-elastic solutions to the nonlinear Boltzmann equation for dissipative gases 4063

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
c

0

5

10

 f
(c

)

ε = 10−2

ε = 10−3

ε = 10−4

Figure 4. Same as figure 3 for slightly different parameters (θ, ν) = (1.1, 1.3). The velocity
distribution now reaches a three-peak structure when ε ≡ 1 − α0 → 0+.
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Figure 5. Velocity distribution obtained from DSMC for (θ, ν) = (1.0, 0.5). These parameters
correspond to the border of the ‘Zoo’ region shown in figure 6.

three-peak structure (see figure 4). Note that the parameters corresponding to figures 3 and 4
are quite close: (θ, ν) = (1.0, 1.2) and (1.1, 1.3), respectively.

However, upon changing the parameters θ and ν, it appears that more complex shapes
can be observed: f (c) may evolve towards a four-, five-, six-peak form or other structures
such as displayed in figure 5 where f (c) seems to diverge at some points when α0 → 1−,
with nevertheless a finite support. The diversity of the various velocity distributions obtained
numerically calls for a rationalizing study. By a combination of analytical work and numerical
evidence, we will propose below a classification of the different possible limiting velocity
distributions. In addition, in the double peak case, two natural questions will be addressed:
are the peaks exemplified in figure 3 self-similar? If so, what is their shape?

3.1. The double peak scenario: structure and scaling

We start by looking for scaling solutions to equation (1), and restrict our analysis to the limiting
form with the symmetric double peak. As in [17] we take f (c) of the doubly peaked form,

f (c) = b

4E

[
ψ

(
1 + bc

2E

)
+ ψ

(
1 − bc

2E

)]
, (16)
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Figure 6. Phase diagram in the quasi-elastic limit. Each dot corresponds to a set of numerical
simulations at smaller and smaller values of ε = 1 − α0, performed to check the validity of the
scaling behaviours summarized in table 1. The stability of the non-equilibrium steady state requires
that ν > θ − 1, while on the diagonal ν = θ − 1 the velocity distribution has a power-law tail
[13]. Here α-, α′- and β-scalings are associated with a distribution with two Dirac peaks. For
θ > 1 we numerically observed a solution with three Dirac peaks, while there does not seem to be
a simple common feature for the distributions in the triangular ‘Zoo’ region. An example of type
α-scaling is given in figure 7 (see also figure 8 for type β and figure 9 for type α′). Figures 12 and
13 together with figure 5 above give an overview of several scaling shapes encountered in the Zoo
region. The cross at (1, 1) corresponds to the homogeneous cooling state of inelastic hard rods,
explored in [17].

where the width E = qω is expected to vanish when q → 0+ and b, ω, together with the
function ψ are unknowns. We impose 〈1〉ψ ≡ ∫

ψ = 1, and we choose 〈x〉ψ = 0, which
together with the condition 〈c2〉 = 1/2 implies b2 = 2(1 + 4E2〈x2〉ψ), where normalization
requires that b → (

√
2)− as q → 0+. We note that asymmetric forms with ψ(x) 
= ψ(−x)

may be realized (see [17] and later sections). The ansatz (16) allows us to resolve the structure
of the Dirac peaks, shown in figure 3, and to identify the type of self-similar behaviour
involved. However to this end, we need to expand the collision operator I (c|f ) to second
order in the inelasticity ε = 1 − α0 = 2q. Restriction to first order, as done in (9), enables us
to show that the double Dirac form is a solution of the Boltzmann equation, but does not allow
us to impose constraints on the shape of ψ and on the scaling exponent ω. Technical details
can be found in the appendix, where it is shown that the equation fulfilled by ψ(x) reads

qψ ′(x) + 2E2(ν + 1 − 2θ)xψ(x) + 2Eν+2ψ(x)〈|x − y|ν(x − y)〉ψ
−E3ν(ν + 1)ψ(x)(x2 + 〈y2〉ψ) + 2E3 [(ν + 1)(ν + 2) − 2θ(θ + 1)] 〈y2〉ψψ(x)

+ 4E3θ(θ − 1)x2ψ(x) + 2Eν+3ψ(x)〈〈|y − z|ν+2〉〉 + O(Eqψ) = 0, (17)

where y, z are dummy variables, and terms of O(Eqψ) have been neglected. This relation
involves terms of various orders in inelasticity. Given that E = qω, these terms are O(qa) with
a = 1, 2ω, (2 + ν)ω, 3ω, (3 + ν)ω, ω + 1. Depending on the values of the parameters θ and ν

one has to distinguish various possibilities to characterize the phase diagram, i.e. the physically
allowed region of the (θ, ν)-parameter space. The stability criteria for the steady state (see
[13]) constrain the phase diagram in figure 6 to be inside the region [θ � 0, ν � θ − 1].
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Figure 7. Scaling behaviour of type α. Plots of εωf (c) versus x = (|c| − c∗)/εω at θ = 1 for
various inelasticities ε = 1 − α0 with ω = 1/2 as predicted. Here c∗ = 1/

√
2 corresponds to the

peak of the distribution. Open symbols correspond to ν = 1.5 and filled symbols are for ν = 1.2
(same as in figure 3). The inset shows the same results on a linear-log scale. In each case, the
prediction of equation (19) for the scaling function is shown by the continuous curve. Note that
no fitting parameter is involved.

3.1.1. Case ν > 0 (α- and β-scalings). Type α-scaling: the terms of order q and q2ω are the
dominant ones in equation (17). So, ω = 1/2 and

ψ ′(x) = −(ν + 1 − 2θ)xψ(x). (18)

The scaling function ψ is therefore Gaussian,

ψ(x) ∝ exp(−(ν + 1 − 2θ)x2). (19)

Such a solution is meaningful only if ν + 1 − 2θ > 0. This scaling behaviour, hereafter
referred to as type α (not to be confused with the restitution coefficient α0), is compared in
figure 7 with Monte Carlo results. The agreement between the analytical prediction and the
numerical data involves two aspects: first, the exponent ω = 1/2 allows us to rescale all
distributions onto a single master curve. Second, this curve is exactly of the form (19), where
the prefactor hidden in the proportionality sign ∝ follows from normalization. Note that the
excellent agreement between numerical data and analytical prediction is therefore obtained
without any fitting parameter.

Type β-scaling: on the line ν + 1 − 2θ = 0, the term of order q2ω in (17) vanishes. If
0 < ν < 1, the terms q and q(ν+2)ω can be balanced with the result ω = 1/(ν + 2), and one
finds at large |x|,

ψ(x) ∝ exp

(
− 2

ν + 2
|x|ν+2

)
. (20)

Unlike in α-scaling, it is not possible here to obtain ψ in close form. We will refer to (20)
together with ω = 1/(ν + 2) as a scaling of type β. Figure 8 shows that this behaviour is
in good agreement with the simulation results. Note that equation (20) seems to hold also
for small values of x, whereas it is a priori only valid to describe the large-x tail of ψ . We
also note that the large-x tail (20) exhibits the same exponent ν + 2 as in white noise driving
(see equation (11)). The important qualitative difference between the velocity distributions
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Figure 8. Scaling of type β. Same plot as figure 7, displaying εωf (c) versus x = (|c| − c∗)/εω at
(θ, ν) = (3/4, 1/2) with ω = 1/(ν + 2) = 2/5 and c∗ = 1/

√
2. The continuous curve shows the

prediction of equation (20) where the prefactor is determined from the constraint
∫

dc ψ = 1.

reported in section 2 and here is: with WN driving f (c) is regular when α0 → 1− and with
negative friction it develops singularities.

On the line ν + 1 − 2θ = 0, now with ν > 1, one can only balance the terms in q and q3ω

in (17). This leads to ω = 1/3, but the associated function ψ diverges for large arguments and
is thus unphysical. This is an indication that the double peak limiting form cannot be valid on
the line ν + 1 − 2θ = 0 if ν > 1. Monte Carlo results confirm this. They display a limiting
form with three peaks in this region of parameter space (see figure 4 and section 3.2 for a more
thorough discussion, in particular figure 6).

The special point on that line with (θ, ν) = (1, 1) represents free cooling of inelastic hard
rods, which has been studied in [17]. There it was shown that (16) holds, with ω = 1/3 and
an asymmetric scaling function, behaving at large arguments as

ψ(x) � C exp
[

1
3x3 + o(1)

]
(x → −∞)

ψ(x) � C ′ exp[−2x〈y2〉ψ + o(1)] with C ′ = C exp
[− 1

3 〈y3〉ψ
]

(x → +∞).

(21)

This asymmetry looks quite singular since most other scaling functions identified so far are
symmetric. However, more exceptional cases with asymmetric scaling forms ψ can be found
in figure 10 (which corresponds to the point (0,−1), a case of marginal stability where
ν = θ − 1), as well as in the scaling shapes of the ‘Zoo’ region of figure 6. We also emphasize
that the Dirac peaks appearing at the level of description when α0 → 1− are not artefacts
of discarding any spatial dependence in (1), but provide the exact solution of the Boltzmann
equation where due account is taken of the spatial degree of freedom of the particles. This has
been confirmed in [5, 17], where the velocity distributions of the homogeneous Boltzmann
equation have been compared with its exact counterpart, obtained by molecular dynamics
simulations.

3.1.2. Case ν = 0 (α′-scaling). Type α′-scaling: when ν vanishes (Maxwell models), the
first three terms on the rhs of (17) are of the same order, so that ω = 1/2 and ψ satisfies

ψ ′(x) + 2(1 − 2θ)xψ(x) + 2ψ(x)〈x − y〉ψ = ψ ′(x) + 4(1 − θ)xψ(x) = 0, (22)

since 〈y〉ψ = 0. Its solution is

ψ(x) ∝ exp[−2(1 − θ)x2]. (23)
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Figure 9. Scaling of type α′. Same plot as figures 7 and 8, displaying εωf (c) versus x =
(|c| − c∗)/εω at (θ, ν) = (0.2, 0.0) with ω = 1/2 and c∗ = 1/

√
2. The continuous curve is for

equation (23), i.e. ∝ exp[−(1 − θ)x2)].

This scaling, coined α′, a priori holds for 0 � θ � 1, as follows from ν = 0 and the stability
requirement ν + 1 − θ � 0. However, when θ = 1 (free cooling), (23) becomes unphysical.
This is a consequence of the peculiar behaviour of the freely cooling one-dimensional Maxwell
model: the velocity distribution, which is algebraic, does not depend on α0 for α0 < 1
[20, 21]. In the (trivial) quasi-elastic limit, f can consequently not develop a singularity of
any kind. The scaling ansatz (16) has to break down for θ = 1 and it does. For θ < 1, the
simulation data are in good agreement with α′-scaling predictions (see figure 9), where again
no fitting parameter has been used.

3.1.3. Case ν < 0 (β-scaling). Type β-scaling: finally we investigate the region ν < 0,
which is further confined by the stability requirements for the steady state (θ � 0, ν � θ − 1).
We then have (2 + ν)ω < 2ω and the terms of order q and q(2+ν)ω balance each other in
equation (17). This implies ω = 1/(ν + 2) and

ψ ′(x)

ψ(x)
= −2〈|x − y|ν(x − y)〉ψ. (24)

We recover the β-scaling, and in particular the large-|x| expression,

ψ(x) ∝ exp

(
− 2

ν + 2
|x|ν+2

)
. (25)

In the region ν < 0, we have successfully tested the validity of β-scaling against Monte Carlo
simulations. In some cases, however, we note that the best rescaling with respect to inelasticity
is obtained with an exponent ωopt that slightly differs from the predicted 1/(ν+2). For instance,
with (θ, ν) = (0.7,−0.2) we find ωopt � 0.58 while 1/(ν + 2) � 0.55. This could indicate
that the scaling limit has not yet been reached or it reflects the fact that for negative values of
ν it is more difficult to reach the steady state in Monte Carlo simulations. Here, the collision
frequency is dominated by encounters with |c1 − c2|  1 that lead to a negligible change in
the velocities of colliding partners. Consequently, the numerical efficiency of our algorithm
drops significantly.
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Figure 10. Velocity distribution at (θ, ν) = (0, −1) for two inelasticities. f (c) develops a cusp at
c = c∗ where c∗ is ε-dependent. Plotting ψ(x) = εf (c) versus x = (c − c∗)/ε (inset) shows that
here the scaling form (16) applies with an asymmetric ψ , and ω = 1 = 1/(ν + 2). For such low
values of ν, the CPU time required to gather statistical knowledge is particularly large.

3.2. Range of validity of scaling predictions: towards a phase diagram

We have reported above a good agreement between DSMC calculations and the scaling
predictions assuming the limiting double peak forms of α-, β- and α′-scaling, when
ε = 1 − α0 → 0+, for several points in the (θ, ν)-plane. We have also shown that in
some (complementary) regions of this plane the scaling hypothesis (16) does not provide
an attracting fixed point solution of the stationary nonlinear Boltzmann equation (1) in the
quasi-elastic limit. In fact, our analysis shows that physical solutions with α-scaling do not
exist for ν � 0 and ν + 1 < 2θ (e.g. (θ, ν) = (1.1, 0.3); (1.1, 1.1)), and likewise for β-scaling
with ν > 1 and ν + 1 = 2θ (e.g. (θ, ν) = (1.1, 1.2)). In these regions we have no predictions.

Furthermore, in the triangular region [θ > 1, ν > 1, ν + 1 > 2θ ] the NF-driven kinetic
equation admits—at least on the basis of the criteria developed—QE-limiting solutions with
two peaks, consistent at least to second order in ε. The dynamics selects a different solution
with three peaks (see figure 4 with (θ, ν) = (1.1, 1.3)).

A systematic Monte Carlo investigation of various points (θ, ν)—shown as dots in
figure 6—reveals that the range of validity of α-scaling is in fact limited to θ � 1.4 In
principle it would be possible to repeat the analysis of section 3.1 with a three-peak solution,
however we did not try to carry out this analysis. The reason is three fold: First, it would not
explain why α-scaling is not selected by the dynamics in the angular region above. Second,
it is cumbersome. Third, there is numerical evidence that f (c) may differ from the two-peak
or three-peak form (see the Zoo region of figure 6). Thus, such an analysis would in any case
not provide a complete picture. A numerical investigation appears unavoidable and was used
to identify the different regions of the ‘phase diagram’ shown in figure 6. We summarize our
main findings:

• α-Scaling holds for ν > 0 and ν > 2θ −1 as found analytically, with the restriction θ � 1
that follows from numerical evidence.

4 In this respect, figure 7 corresponds to the frontier of the domain of validity of α-scaling. We have checked however
that cases with θ < 1 and ν > 0 belong to the α family, provided that ν + 1 − 2θ > 0.
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Figure 11. Plots of ψ(x) = εωf (c) versus x = (c−c∗)/εω , with ω = 1/2 for the same parameters
as in figure 4 (θ, ν) = (1.1, 1.3), i.e. for f (c) approaching a structure composed by three Dirac
peaks. Here, c∗ � 0.76 denotes the position of the right peak seen in figure 4. The continuous
curve shows expression (19).

Table 1. Theoretical predictions for the different scaling behaviours in the two-peak region.

Scaling type Rescaling exponent Rescaling function

α ω = 1/2 ψ(x) ∝ exp(−(ν + 1 − 2θ)x2)

α′ ω = 1/2 ψ(x) ∝ exp(−2(1 − θ)x2)

β ω = 1/(ν + 2) ψ(x) ∼ exp(−2|x|ν+2/(ν + 2)) at large |x|
θ = 1, ν = 1 ω = 1/3 Equation (21), ψ asymmetric

• β-Scaling applies to the line 0 < ν = 2θ − 1 < 1 and also to the region ν < 0, where the
additional restriction ν > θ − 1 follows from the stability requirement of the steady-state
solution of equation (1). Figure 10 with (θ, ν) = (0,−1) shows a case of marginal
stability where ν = θ − 1. It is observed that the scaling exponent is still given by
ω = 1/(ν + 2) but the form (25) breaks down (ψ becomes asymmetric).

• α′-Scaling is valid on the ‘Maxwell’ line ν = 0 for θ < 1.
• Hard rods under free cooling, i.e. (θ, ν) = (1, 1), display specific scaling (see

equation (21), table 1 and [17] for details).
• None of the above scalings hold for θ > 1, where we have always observed a triple peak

as in figure 4. Figure 11 (with the same parameters as figure 4) shows that the distributions
are also self-similar, with an exponent ω = 1/2. Although, we have no prediction for
the three-peak forms, we note that the scaling function in figure 11 is compatible with
equation (19), pertaining to α-scaling. This could be specific to the parameters chosen,
since those value of θ and ν obey the inequalities, ν > 0 and ν > 2θ −1, where α-scaling
provides a two-peak solution of the Boltzmann equation. Two- and three-peak shapes
therefore seem to have common features. We did not explore self-similarity further in the
three-peak region.

• There exists another triangular region in the (θ, ν)-plane (the Zoo in figure 6), where f (c)

does not evolve towards a two-peak or a three-peak form. In some instances, the Monte
Carlo data are compatible with a four-peak limit as ε → 0+ (see figure 12 where only the



4070 A Barrat et al

0.68 0.7 0.72
c

0

10

20

30

40

50

60
f(

c)

ε=5.10−6

ε=10−6

ε=5.10−7

0.5 0.6 0.7 0.8
c

0

5

10

15

20

f(
c)

ε=5.10−4

ε=10−4

ε=5.10−6

Figure 12. Two Zoo members at (θ, ν) = (0.75, 0.3) (left) and (θ, ν) = (0.85, 0.5) (right). Note
the x- and y-scales in the plot on the right. For these parameters one needs to decrease ε below
10−6 to realize that a seemingly single peak is likely to split into two sub-peaks as ε → 0+.

0.6 0.8
c

0

1

2

3

4

5

6

7

f(
c)

ε=10− 4

ε=5.10−5

ε=10−5

Figure 13. Another Zoo member at (θ, ν) = (0.9, 0.5). The velocity distribution seems to evolve
towards a six-peak form as ε → 0+.

sector with c > 0 has been shown). In some other cases, we observe precursors of what
seems to be a six-peak form (see figure 13). For both figures 12 and 13, it is difficult to
decide if the limiting form for ε → 0+ will be a collection of Dirac distributions (with
therefore a support of vanishing measure) or a distribution with finite support. We could
however identify some points in the triangle where the limiting f (c) clearly is of finite
support (see figure 5).

To summarize, α′- and β-scalings apply in the whole domain where they provide a solution to
the Boltzmann equation, but α-scaling has a restricted domain of relevance compared to the
region where the corresponding solution is self-consistent. The key features of the analytical
predictions are recalled in table 1.

4. Conclusion

We have studied the one-dimensional nonlinear Boltzmann equation in the limit of quasi-
elastic collisions for a class of dissipative fluids where material properties are encoded in an
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exponent ν such that the collision frequency between two particles with velocities c1 and c2

scales like |c1 − c2|ν . Two driving mechanisms have been considered: stochastic white noise
(in which case the generic effects only depend on ν) and deterministic negative friction (in
which case, in addition to ν, a second important exponent θ � 0, characterizing the driving,
has been considered). In both stochastic and deterministic cases, the quasi-elastic limit does
not commute with the limit of large velocities. This is specific to one space dimension. There
are however important differences between the two driving mechanisms. In the white noise
case, the normalized velocity distribution f (c), suitably rescaled to have fixed variance, is
regular and displays stretched exponential QE-tails of the form exp[−cν+2]. On the other hand,
f (c) with deterministic driving—which encompasses the much studied homogeneous cooling
regime—develops singularities as ε ≡ 1 − α0 → 0+. The corresponding scaling behaviour
is particularly rich. We have classified the scaling forms encountered in several families,
see figure 6 for a global picture. Some regions of this (θ, ν)-diagram are well understood,
such as regions α, α′ and β. Some other domains resist theoretical understanding. Even if
some progress might be possible in the three-peak region (one at c = 0, the two others at
±c∗), the situation in the central Zoo region of figure 6 seems more difficult to rationalize,
and computationally elusive, since one needs to reach extremely small values of ε to see the
precursors of presumed singularities.

Appendix

In this appendix, we expand the collision operator I (c|f ) defined in (7) in powers of
q = (1 − α)/2, up to second order. Such an expansion is required to unveil the internal
structure of the singular peaks that develop as q → 0+ with driving by negative friction.
Assuming that the functional form of the velocity distribution is given by (16), our goal is to
obtain here the differential equation fulfilled by the scaling function ψ . Starting from

I (c|f ) =
∫

du|c − u|νf (u)

[
1

pν+1
f

(
c +

q

p
(c − u)

)
− f (c)

]
, (A.1)

one obtains by extending (9) to O(q2) included,

I (c|f ) = q
d

dc

[
f (c)

∫
duf (u)|c − u|ν(c − u)

]

+
q2

2

(
d

dc

)2 [
f (c)

∫
du|c − u|ν+2f (u)

]
+ O(q3). (A.2)

Inserting the ansatz (16) into (A.2), the term I (1) of order q reads

I (1) = −q

(
b

4E

)2 (
2

b

)ν+1 d

dx

{
ψ(x)

∫
dy ψ(y)(1 − E(x + y))ν+1

}

+ q

(
b

4E

)2 (
2E

b

)ν+1 d

dx

{
ψ(x)

∫
dy ψ(y)|x − y|ν(x − y)

}
, (A.3)

and expanding (1 − E(x + y))ν+1 further yields

I (1) = q

4E2

(
2

b

)ν−1 d

dx

{[
−1 + xE(ν + 1) − ν(ν + 1)

2
E2

∫
dy ψ(y)(x + y)2

+ Eν+1
∫

dy ψ(y)|x − y|ν(x − y)

]
ψ(x)

}
. (A.4)
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The second order term I (2) in (A.2) is

I (2) = q2

2

(
b

4E

)2
b

2E

(
d

dx

)2
{(

2E

b

)ν+2

ψ(x)

∫
dy ψ(y)|x − y|ν+2

+

(
2

b

)ν+2

ψ(x)

∫
dy ψ(y)|1 − E(x + y)|ν+2

}
(A.5)

and we can keep only the largest term as q → 0+, i.e.

q2

8E3

(
2

b

)ν−1

ψ ′′(x). (A.6)

Collecting terms yields finally

I (c|f ) = q

4E2

(
2

b

)ν−1 d

dx

{[
−1 + xE(ν + 1) − ν(ν + 1)

2
E2

∫
dy ψ(y)(x + y)2

+ Eν+1
∫

dy ψ(y)|x − y|ν(x − y)

]
ψ(x) +

q

2E
ψ ′(x)

}
. (A.7)

The next step is to evaluate the right-hand side of equation (14), by an expansion of the
moments κν and µθ+1,

µθ+1 =
∫

dc|c|θ+1f (c) =
∫

dy ψ(y)

∣∣∣∣1 − 2Ey

b

∣∣∣∣
θ+1

= b−1−θ [1 + 2θ(θ + 1)E2〈y2〉ψ ] (A.8)

κν =
∫ ∫

dcdu|c − u|ν+2f (c)f (u)

= 2ν+1

bν+2

[∫
dy dzψ(y)ψ(z)(1 − E(y + z))ν+2 + Eν+2

∫
dy dzψ(y)ψ(z)|y − z|ν+2

]
(A.9)

= 2ν+1

bν+2

[
1 + (ν + 1)(ν + 2)E2〈y2〉ψ + Eν+2

∫
dy dz ψ(y)ψ(z)|y − z|ν+2

]
. (A.10)

With c close to −1/b, one can also perform the expansion

d

dc
(c|c|θ−1f ) = −b2−θ

8E2

d

dx
{ψ(x)[1 − 2θEx + 2θ(θ − 1)E2x2]}, (A.11)

and the rhs of equation (16) can thus finally be written as

pq
κν

2µθ+1

d

dc

(
c|c|θ−1f

) = − pq

4E2

(
2

b

)ν−1 d

dx

{
ψ(x)

[
1 − 2θEx + 2θ(θ − 1)E2x2

+ ((ν + 1)(ν + 2) − 2θ(θ + 1))E2〈y2〉ψ
+ Eν+2

∫ ∫
dy dz|y − z|ν+2ψ(y)ψ(z)

]}
. (A.12)

We obtain (17), after simplification by the prefactors and integration with respect to x.
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